Landslide detection, monitoring and prediction with remote-sensing techniques

Landslides are widespread occurrences that can become catastrophic when they occur near settlements and infrastructure. Detection, monitoring and prediction are fundamental to managing landslide risks and often rely on remote-sensing techniques (RSTs) that include the observation of Earth from space, laser scanning and ground-based interferometry. In this Technical Review, we describe the use of RSTs in landslide analysis and management. Satellite RSTs are used to detect and measure landslide displacement, providing a synoptic view over various spatiotemporal scales. Ground-based sensors (including ground-based interferometric radar, Doppler radar and lidar) monitor smaller areas, but combine accuracy, high acquisition frequency and configuration flexibility, and are therefore increasingly used in real-time monitoring and early warning of landslides. Each RST has advantages and limitations that depend on the application (detection, monitoring or prediction), the size of the area of concern, the type of landslide, deformation pattern and risks posed by landslide. The integration of various technologies is, therefore, often best. More effective landslide risk management requires greater leveraging of big data, more strategic use of monitoring resources and better communication with residents of landslide-prone areas.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

A multi-sensor approach for increased measurements of floods and their societal impacts from space

Article Open access 08 December 2023

Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring

Article Open access 10 March 2020

Multi-source remote sensing-based landslide investigation: the case of the August 7, 2020, Gokseong landslide in South Korea

Article Open access 27 May 2024

References

  1. Bennett, G. L., Miller, S. R., Roering, J. J. & Schmidt, D. A. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction. Geology44, 363–366 (2016). ArticleGoogle Scholar
  2. Moreiras, S. M. Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza Province, Argentina. Landslides2, 53–59 (2005). ArticleGoogle Scholar
  3. Petley, D. N. et al. Trends in landslide occurrence in Nepal. Nat. Hazards43, 23–44 (2007). ArticleGoogle Scholar
  4. Froude, M. J. & Petley, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci.18, 2161–2181 (2018). ArticleGoogle Scholar
  5. Patton, A. I., Rathburn, S. L. & Capps, D. M. Landslide response to climate change in permafrost regions. Geomorphology340, 116–128 (2019). ArticleGoogle Scholar
  6. Mantovani, F., Soeters, R. & Van Westen, C. J. Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology15, 213–225 (1996). ArticleGoogle Scholar
  7. Metternicht, G., Hurni, L. & Gogu, R. Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ.98, 284–303 (2005). ArticleGoogle Scholar
  8. Delacourt, C. et al. Remote-sensing techniques for analysing landslide kinematics: a review. Bull. Soc. Géol. Fr.178, 89–100 (2007). ArticleGoogle Scholar
  9. Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N. & Crippa, B. Persistent scatterer interferometry: a review. ISPRS J. Photogramm. Remote Sens.115, 78–89 (2016). ArticleGoogle Scholar
  10. Mondini, A. C. et al. Landslide failures detection and mapping using synthetic aperture radar: past, present and future. Earth Sci. Rev.216, 103574 (2021). ArticleGoogle Scholar
  11. Casagli, N. et al. Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron. Disasters4, 9 (2017). ArticleGoogle Scholar
  12. Lillesand, T., Kiefer, R. W. & Chipman, J. Remote Sensing and Image Interpretation (John Wiley & Sons, 2014).
  13. Jaboyedoff, M. et al. Use of LIDAR in landslide investigations: a review. Nat. Hazards61, 5–28 (2012). ArticleGoogle Scholar
  14. Salvini, R., Francioni, M., Riccucci, S., Bonciani, F. & Callegari, I. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geomorphology185, 110–122 (2013). ArticleGoogle Scholar
  15. Rosi, A. et al. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides15, 5–19 (2018). ArticleGoogle Scholar
  16. Lombardi, L. et al. The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides14, 685–696 (2017). ArticleGoogle Scholar
  17. Ferrigno, F., Gigli, G., Fanti, R., Intrieri, E. & Casagli, N. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy). Nat. Hazards Earth Syst. Sci.17, 845–860 (2017). ArticleGoogle Scholar
  18. Intrieri, E. et al. Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application. Nat. Hazards Earth Syst. Sci.17, 1713–1723 (2017). ArticleGoogle Scholar
  19. MacDonald, H. C. & Grubbs, R. S. NASA Lyndon B. Johnson Space Center NASA Earth Resources Survey Symposium Vol. 1-B (NASA, 1975).
  20. Zhao, C. & Lu, Z. Remote sensing of landslides: a review. Remote Sens.10, 279 (2018). ArticleGoogle Scholar
  21. Martha, T. R., Kerle, N., Van Westen, C. J., Jetten, V. & Kumar, K. V. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J. Photogramm. Remote Sens.67, 105–119 (2011). ArticleGoogle Scholar
  22. Hölbling, D. et al. Comparing manual and semi-automated landslide mapping based on optical satellite images from different sensors. Geosciences7, 37 (2017). ArticleGoogle Scholar
  23. Solari, L. et al. Review of satellite interferometry for landslide detection in Italy. Remote Sens.12, 1351 (2020). ArticleGoogle Scholar
  24. Guzzetti, F. et al. Landslide inventory maps: new tools for an old problem. Earth Sci. Rev.112, 42–66 (2012). ArticleGoogle Scholar
  25. Scaioni, M., Longoni, L., Melillo, V. & Papini, M. Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens.6, 9600–9652 (2014). ArticleGoogle Scholar
  26. Tofani, V., Segoni, S., Agostini, A., Catani, F. & Casagli, N. Technical note: use of remote sensing for landslide studies in Europe. Nat. Hazards Earth Syst. Sci.13, 299–309 (2013). ArticleGoogle Scholar
  27. Savvaidis, P. D. Existing landslide monitoring systems and techniques. In From Stars to Earth and Culture 242–258 (Academia, 2003).
  28. Ose, K., Corpetti, T. & Demagistri, L. in Optical Remote Sensing of Land Surface 57–124 (Elsevier, 2016).
  29. Li, J. & Roy, D. P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote. Sens.9, 902 (2017). ArticleGoogle Scholar
  30. Li, J. & Chen, B. Global revisit interval analysis of Landsat-8-9 and Sentinel-2A-2B data for terrestrial monitoring. Sensors20, 6631 (2020). ArticleGoogle Scholar
  31. Jacobsen, K. Characteristics of very high resolution optical satellites for topographic mapping (isprs, 2011); https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-4-W19/137/2011/.
  32. Li, S., Kang, X., Fang, L., Hu, J. & Yin, H. Pixel-level image fusion: a survey of the state of the art. Inf. Fusion33, 100–112 (2017). ArticleGoogle Scholar
  33. Santurri, L. et al. Assessment of very high resolution satellite data fusion techniques for landslide recognition. In ISPRS TC VII Symposium– 100 Years Vienna, Austria (eds Wagner, W. & Székely, B.) 5–7 (ISPRS, 2010).
  34. Curlander, J. C. & McDonough, R. N. Synthetic Aperture Radar Vol. 11 (Wiley, 1991).
  35. Wasowski, J. & Bovenga, F. Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng. Geol.174, 103–138 (2014). ArticleGoogle Scholar
  36. Bamler, R. & Hartl, P. Synthetic aperture radar interferometry. Inverse Probl.14, R1 (1998). ArticleGoogle Scholar
  37. Gabriel, A. K., Goldstein, R. M. & Zebker, H. A. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res. Solid Earth94, 9183–9191 (1989). ArticleGoogle Scholar
  38. Massonnet, D. & Feigl, K. L. Discrimination of geophysical phenomena in satellite radar interferograms. Geophys. Res. Lett.22, 1537–1540 (1995). ArticleGoogle Scholar
  39. Zebker, H. A. & Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens.30, 950–959 (1992). ArticleGoogle Scholar
  40. Ferretti, A., Prati, C. & Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.39, 8–20 (2001). ArticleGoogle Scholar
  41. Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens.40, 2375–2383 (2002). ArticleGoogle Scholar
  42. Conforti, M., Pascale, S., Pepe, M., Sdao, F. & Sole, A. Denudation processes and landforms map of the Camastra River catchment (Basilicata–South Italy). J. Maps9, 444–455 (2013). ArticleGoogle Scholar
  43. Zhou, X., Chang, N.-B. & Li, S. Applications of SAR interferometry in earth and environmental science research. Sensors9, 1876–1912 (2009). ArticleGoogle Scholar
  44. Colesanti, C., Ferretti, A., Locatelli, R., Novali, F. & Savio, G. In 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings 1193–1195 (IEEE, 2003).
  45. Michel, R. M., Avouac, J. P. & Taboury, J. Measuring ground displacements from SAR amplitude images: application to the Landers earthquake. Geophys. Res. Lett.26, 875–878 (1999). ArticleGoogle Scholar
  46. Strozzi, T., Luckman, A., Murray, T., Wegmuller, U. & Werner, C. L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens.40, 2384–2391 (2002). ArticleGoogle Scholar
  47. De Zan, F. Accuracy of incoherent speckle tracking for circular Gaussian signals. IEEE Geosci. Remote Sens. Lett.11, 264–267 (2014). ArticleGoogle Scholar
  48. Reeves, B., Noon, D. A., Stickley, G. F. & Longstaff, D. Slope stability radar for monitoring mine walls. In Proc.Subsurface and Surface Sensing Technologies and Applications III Vol. (ed. Nguyen, C.) 57–67 (SPIE, 2001).
  49. Tarchi, D. et al. SAR interferometry for structural changes detection: A demonstration test on a dam. In IEEE 1999 International Geoscience and Remote Sensing Symposium 1522–1524 (IEEE, 1999).
  50. Atzeni, C. et al. Ground-based radar interferometry for landslide monitoring and control. In Proc. ISSMGE Field Workshop on Landslides and Natural/Cultural Heritage Trabzon (Turkey) 195–209 (ISSMGE, 2001).
  51. Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D. & Rose, N. D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J.52, 515–529 (2015). ArticleGoogle Scholar
  52. Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol.235, 39–52 (2018). ArticleGoogle Scholar
  53. Di Traglia, F. et al. Ground-based InSAR reveals conduit pressurization pulses at Stromboli volcano. Terra Nova25, 192–198 (2013). ArticleGoogle Scholar
  54. Del Ventisette, C. et al. Using ground based radar interferometry during emergency: the case of the A3 motorway (Calabria Region, Italy) threatened by a landslide. Nat. Hazards Earth Syst. Sci.11, 2483–2495 (2011). ArticleGoogle Scholar
  55. Gubler, H. Five years experience with avalanche-, mudflow-, and rockfall-alarm systems in Switzerland. In Proc. International Snow Science Workshop 1–9 (ISSW, 2000).
  56. Meier, L., Jacquemart, M., Blattmann, B. & Arnold, B. Real-time avalanche detection with long-range, wide-angle radars for road safety in Zermatt, Switzerland. In Proc. International Snow Science Workshop 304–308 (ISSW, 2016).
  57. Cui, P., Guo, X., Yan, Y., Li, Y. & Ge, Y. Real-time observation of an active debris flow watershed in the Wenchuan Earthquake area. Geomorphology321, 153–166 (2018). ArticleGoogle Scholar
  58. Mikoš, M. & Huebl, J. Practice guidelines on monitoring and warning technology for debris flows: TXT-tool 2.386-1.2. Landslide Dyn. ISDR-ICL Landslide Interact. Teach. Tools1, 567–585 (2018). Google Scholar
  59. Meier, L., Jacquemart, M., Wahlen, S. & Blattmann, B. Real-time rockfall detection with doppler radars. In Proc. 6th Interdisciplinary Workshop on Rockfall Protection 1–4 (CIMNE, 2017).
  60. Michelini, A. et al. A new radar-based system for detecting and tracking rockfall in open pit mines. In Proc. 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering 1183–1192 (Australian Centre for Geomechanics, 2020).
  61. Wahlen, S. et al. Real-time rockfall detection system with automatic road closure and reopening using Doppler radar technology at the Ruinon Landslide, Italy. EGU General Assembly 2021https://doi.org/10.5194/egusphere-egu21-14818 (2021).
  62. Viviani, F., Michelini, A. & Mayer, L. RockSpot: an Interferometric Doppler Radar for Rockfall/Avalanche Detection and Tracking. In 2020 IEEE Radar Conference (RadarConf20) 1–5 (IEEE, 2020).
  63. Mallet, C. M. & Bretar, F. D. R. Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogramm. Remote Sens.64, 1–16 (2009). ArticleGoogle Scholar
  64. Brunsden, D. Mass movement: the research frontier and beyond: a geomorphological approach. Geomorphology7, 85–128 (1993). ArticleGoogle Scholar
  65. Mondini, A. et al. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ.115, 1743–1757 (2011). ArticleGoogle Scholar
  66. Achache, J., Fruneau, B. & Delacourt, C. Applicability of SAR interferometry for monitoring of landslides. ERS Appl.383, 165 (1996). Google Scholar
  67. Fruneau, B. N. D., Achache, J. & Delacourt, C. Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics265, 181–190 (1996). ArticleGoogle Scholar
  68. Kimura, H. & Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sens.66, 337–344 (2000). Google Scholar
  69. Berardino, P. et al. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng. Geol.68, 31–51 (2003). ArticleGoogle Scholar
  70. Rott, H., Scheuchl, B., Siegel, A. & Grasemann, B. Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys. Res. Lett.26, 1629–1632 (1999). ArticleGoogle Scholar
  71. Schlögel, R., Doubre, C., Malet, J.-P. & Masson, F. Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology231, 314–330 (2015). ArticleGoogle Scholar
  72. Bekaert, D. P. S., Handwerger, A. L., Agram, P. & Kirschbaum, D. B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: an application to Nepal. Remote Sens. Environ.249, 111983 (2020). ArticleGoogle Scholar
  73. Singhroy, V., Alasset, P.-J., Couture, R. & Poncos, V. InSAR monitoring of landslides on permafrost terrain in Canada. In 2007 IEEE International Geoscience and Remote Sensing Symposium 2451–2454 (IEEE, 2007).
  74. Hao, J. et al. Investigation of a small landslide in the Qinghai-Tibet Plateau by InSAR and absolute deformation model. Remote Sens.11, 2126 (2019). ArticleGoogle Scholar
  75. Yao, T. et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc.100, 423–444 (2019). ArticleGoogle Scholar
  76. Cui, P. & Jia, Y. Mountain hazards in the Tibetan Plateau: research status and prospects. Natl Sci. Rev.2, 397–399 (2015). ArticleGoogle Scholar
  77. Di Martire, D. et al. A nation-wide system for landslide mapping and risk management in Italy: the second Not-ordinary Plan of Environmental Remote Sensing. Int. J. Appl. Earth Obs. Geoinf.63, 143–157 (2017). Google Scholar
  78. Meisina, C. et al. Geological interpretation of PSInSAR data at regional scale. Sensors8, 7469–7492 (2008). ArticleGoogle Scholar
  79. Zhang, Y. et al. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides13, 1273–1284 (2016). ArticleGoogle Scholar
  80. Lauknes, T. et al. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sens. Environ.114, 2097–2109 (2010). ArticleGoogle Scholar
  81. Ciampalini, A. et al. Analysis of building deformation in landslide area using multisensor PSInSAR™ technique. Int. J. Appl. Earth Obs. Geoinf.33, 166–180 (2014). Google Scholar
  82. Raspini, F. et al. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards86, 327–351 (2017). ArticleGoogle Scholar
  83. Cigna, F., Bianchini, S. & Casagli, N. How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides10, 267–283 (2013). ArticleGoogle Scholar
  84. Tofani, V., Raspini, F., Catani, F. & Casagli, N. Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens.5, 1045–1065 (2013). ArticleGoogle Scholar
  85. Berti, M., Corsini, A., Franceschini, S. & Iannacone, J. Automated classification of persistent scatterers interferometry time series. Nat. Hazards Earth Syst. Sci.13, 1945–1958 (2013). ArticleGoogle Scholar
  86. Cruden, D. M. & Varnes, D. J. in Landslides: Investigation and MitigationSpecial Report 247 (eds Turner, A. K. & Schuster, R. L.) Ch. 3 (Transportation Research Board, National Academy of Sciences, 1996).
  87. Strozzi, T. et al. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides2, 193–201 (2005). ArticleGoogle Scholar
  88. Dong, J. et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China. Remote Sens. Environ.205, 180–198 (2018). ArticleGoogle Scholar
  89. Cignetti, M. et al. Taking advantage of the ESA G-pod service to study ground deformation processes in high mountain areas: a Valle d’Aosta case study, northern Italy. Remote Sens.8, 852 (2016). ArticleGoogle Scholar
  90. Manconi, A. et al. Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Nat. Hazards Earth Syst. Sci.14, 1835–1841 (2014). ArticleGoogle Scholar
  91. Raspini, F. et al. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy). Remote Sens.7, 14576–14596 (2015). ArticleGoogle Scholar
  92. Singleton, A., Li, Z., Hoey, T. & Muller, J. P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ.147, 133–144 (2014). ArticleGoogle Scholar
  93. Jaboyedoff, M. & Derron, M.-H. in Developments in Earth Surface Processes Vol. 23 (Elsevier, 2020).
  94. Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F. & Reichenbach, P. Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Nat. Hazards Earth Syst. Sci.7, 637–650 (2007). ArticleGoogle Scholar
  95. Chigira, M., Tsou, C.-Y., Matsushi, Y., Hiraishi, N. & Matsuzawa, M. Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology201, 479–493 (2013). ArticleGoogle Scholar
  96. Sturzenegger, M. & Stead, D. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Nat. Hazards Earth Syst. Sci.9, 267–287 (2009). ArticleGoogle Scholar
  97. Gigli, G. & Casagli, N. Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds. Int. J. Rock Mech. Min. Sci.48, 187–198 (2011). ArticleGoogle Scholar
  98. Battulwar, R., Zare-Naghadehi, M., Emami, E. & Sattarvand, J. A state-of-the-art review of automated extraction of rock mass discontinuity characteristics using three-dimensional surface models. J. Rock Mech. Geotech. Eng.13, 920–936 (2021). ArticleGoogle Scholar
  99. Giordan, D. et al. Morphological and kinematic evolution of a large earthflow: the Montaguto landslide, southern Italy. Geomorphology187, 61–79 (2013). ArticleGoogle Scholar
  100. Frodella, W. et al. Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (northern Italy). Geomorphology264, 80–94 (2016). ArticleGoogle Scholar
  101. Hervás, J. et al. Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology54, 63–75 (2003). ArticleGoogle Scholar
  102. Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ.120, 25–36 (2021). ArticleGoogle Scholar
  103. Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens.45, 1529–1558 (2007). ArticleGoogle Scholar
  104. Leprince, S. B., Berthier, E., Ayoub, F. O., Delacourt, C. & Avouac, J. P. Monitoring earth surface dynamics with optical imagery. Eos Trans. Am. Geophys. Union89, 1–2 (2008). ArticleGoogle Scholar
  105. Delacourt, C., Allemand, P., Casson, B. & Vadon, H. Velocity field of the ‘La Clapière’ landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett.31, 2004GL020193 (2004). ArticleGoogle Scholar
  106. Lacroix, P., Berthier, E. & Maquerhua, E. T. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens. Environ.165, 148–158 (2015). ArticleGoogle Scholar
  107. Xiong, Z. et al. Pre- and post-failure spatial–temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng. Geol.279, 105880 (2020). ArticleGoogle Scholar
  108. Yang, W. Selecting the best image pairs to measure slope deformation. Sensors20, 4721 (2020). ArticleGoogle Scholar
  109. Bontemps, N., Lacroix, P. & Doin, M.-P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote Sens. Environ.210, 144–158 (2018). ArticleGoogle Scholar
  110. Lacroix, P., Araujo, G., Hollingsworth, J. & Taipe, E. Self-entrainment motion of a slow-moving landslide inferred from Landsat-8 time series. J. Geophys. Res. Earth Surf.124, 1201–1216 (2019). ArticleGoogle Scholar
  111. Stumpf, A., Malet, J.-P. & Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ.189, 40–55 (2017). ArticleGoogle Scholar
  112. Stumpf, A., Malet, J. P., Allemand, P. & Ulrich, P. Surface reconstruction and landslide displacement measurements with Plèiades satellite images. ISPRS J. Photogramm. Remote Sens.95, 1–12 (2014). ArticleGoogle Scholar
  113. Stumpf, A., Michéa, D. & Malet, J.-P. Improved co-registration of Sentinel-2 and Landsat-8 imagery for Earth surface motion measurements. Remote Sens.10, 160 (2018). ArticleGoogle Scholar
  114. Cigna, F., Del Ventisette, C., Liguori, V. & Casagli, N. Advanced radar-interpretation of InSAR time series for mapping and characterization of geological processes. Nat. Hazards Earth Syst. Sci.11, 865–881 (2011). ArticleGoogle Scholar
  115. Cigna, F., Tapete, D. & Casagli, N. Semi-automated extraction of deviation indexes (DI) from satellite persistent scatterers time series: tests on sedimentary volcanism and tectonically-induced motions. Nonlinear Process. Geophys.19, 643–655 (2012). ArticleGoogle Scholar
  116. Hussain, E., Novellino, A., Jordan, C. & Bateson, L. Offline-online change detection for Sentinel-1 InSAR time series. Remote Sens.13, 1656 (2021). ArticleGoogle Scholar
  117. Mateos, R. M. et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslideshttps://doi.org/10.1007/s10346-016-0723-5 (2017). ArticleGoogle Scholar
  118. Necsoiu, M., McGinnis, R. N. & Hooper, D. M. New insights on the Salmon Falls Creek Canyon landslide complex based on geomorphological analysis and multitemporal satellite InSAR techniques. Landslides11, 1141–1153 (2014). ArticleGoogle Scholar
  119. Zhang, Y. et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series. Landslides15, 1299–1315 (2018). ArticleGoogle Scholar
  120. Raspini, F. et al. Persistent scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides16, 2033–2044 (2019). ArticleGoogle Scholar
  121. Journault, J. et al. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides15, 621–636 (2018). ArticleGoogle Scholar
  122. Confuorto, P. et al. Monitoring of remedial works performance on landslide-affected areas through ground- and satellite-based techniques. Catena178, 77–89 (2019). ArticleGoogle Scholar
  123. Raspini, F. et al. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep.8, 7253 (2018). ArticleGoogle Scholar
  124. Garthwaite, M. C. On the design of radar corner reflectors for deformation monitoring in multi-frequency InSAR. Remote Sens.9, 648 (2017). ArticleGoogle Scholar
  125. Crosetto, M. et al. Deformation monitoring using SAR Interferometry and active and passive reflectors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.43, 287–292 (2020). ArticleGoogle Scholar
  126. Bovenga, F., Pasquariello, G., Pellicani, R., Refice, A. & Spilotro, G. Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: the large landslide of Carlantino (Italy). Catena151, 49–62 (2017). ArticleGoogle Scholar
  127. Ferretti, A. et al. Submillimeter accuracy of InSAR time series: experimental validation. IEEE Trans. Geosci. Remote Sens.45, 1142–1153 (2007). ArticleGoogle Scholar
  128. Bardi, F. et al. Monitoring the rapid-moving reactivation of Earth flows by means of GB-InSAR: the April 2013 Capriglio Landslide (northern Appennines, Italy). Remote Sens.9, 165 (2017). ArticleGoogle Scholar
  129. Barla, G., Antolini, F., Barla, M., Mensi, E. & Piovano, G. Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Eng. Geol.116, 218–235 (2010). ArticleGoogle Scholar
  130. Di Traglia, F. et al. Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci. Rev.139, 317–335 (2014). ArticleGoogle Scholar
  131. Kromer, R. A. et al. Automated terrestrial laser scanning with near-real-time change detection-monitoring of the Séchilienne landslide. Earth Surf. Dyn.5, 293–310 (2017). ArticleGoogle Scholar
  132. Catani, F. & Segoni, S. in Treatise on Geomorphology 2nd edn, 531–545 (Elsevier, 2021).
  133. Intrieri, E., Carlà, T. & Gigli, G. Forecasting the time of failure of landslides at slope-scale: a literature review. Earth Sci. Rev.193, 333–349 (2019). ArticleGoogle Scholar
  134. Hungr, O. & Kent, A. Coal mine waste dump failures in British Columbia, Canada. Landslide News9, 26–28 (1995). Google Scholar
  135. Hutchinson, J. Landslide risk — to know, to foresee, to prevent. Geol. Tecnica Ambientale9, 3–24 (2001). Google Scholar
  136. Gigli, G., Fanti, R., Canuti, P. & Casagli, N. Integration of advanced monitoring and numerical modeling techniques for the complete risk scenario analysis of rockslides: the case of Mt. Beni (Florence, Italy). Eng. Geol.120, 48–59 (2011). ArticleGoogle Scholar
  137. Intrieri, E. & Gigli, G. Landslide forecasting and factors influencing predictability. Nat. Hazards Earth Syst. Sci.16, 2501–2510 (2016). ArticleGoogle Scholar
  138. Saito, M. Forecasting time of slope failure by tertiary creep. In Proc. 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Vol. 2 677–683 (Sociedad Mexicana de Mecanica, 1969).
  139. Fukuzono, T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. Landslides22, 8–13 (1985). ArticleGoogle Scholar
  140. Voight, B. A method for prediction of volcanic eruptions. Nature332, 125–130 (1988). ArticleGoogle Scholar
  141. Kilburn, C. R. & Petley, D. N. Forecasting giant, catastrophic slope collapse: lessons from Vajont, northern Italy. Geomorphology54, 21–32 (2003). ArticleGoogle Scholar
  142. Intrieri, E. et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides15, 123–133 (2018). ArticleGoogle Scholar
  143. Rose, N. D. & Hungr, O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int. J. Rock Mech. Min. Sci.44, 308–320 (2007). ArticleGoogle Scholar
  144. Carlà, T., Farina, P., Intrieri, E., Botsialas, K. & Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock masses: examples from an open-pit mine. Eng. Geol.228, 71–81 (2017). ArticleGoogle Scholar
  145. Petley, D. N., Bulmer, M. H. & Murphy, W. Patterns of movement in rotational and translational landslides. Geology30, 719–722 (2002). ArticleGoogle Scholar
  146. Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ.120, 9–24 (2012). ArticleGoogle Scholar
  147. Dong, J. et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides15, 135–144 (2018). ArticleGoogle Scholar
  148. Qi, W., Yang, W., He, X. & Xu, C. Detecting Chamoli landslide precursors in the southern Himalayas using remote sensing data. Landslides18, 3449–3456 (2021). ArticleGoogle Scholar
  149. Dick, G. J., Eberhardt, E., Cabrejo-Liévano, A. G., Stead, D. & Rose, N. D. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J.52, 515–529 (2015). ArticleGoogle Scholar
  150. Crosetto, M. et al. The evolution of wide-area DInSAR: from regional and national services to the European Ground Motion Service. Remote Sens.12, 2043 (2020). ArticleGoogle Scholar
  151. Rosen, P. et al. The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3832–3835 (IEEE, 2017).
  152. Kristensen, L. et al. Movements, failure and climatic control of the Veslemannen rockslide, Western Norway. Landslides18, 1963–1980 (2021). ArticleGoogle Scholar
  153. Xu, Q., Yuan, Y., Zeng, Y. & Hack, R. Some new pre-warning criteria for creep slope failure. Sci. China Technol. Sci.54, 210–220 (2011). ArticleGoogle Scholar
  154. Alcántara-Ayala, I. & Oliver-Smith, A. in Identifying Emerging Issues in Disaster Risk Reduction, Migration, Climate Change and Sustainable Development 101–124 (Springer, 2017).
  155. Alcántara-Ayala, I. & Moreno, A. R. Landslide risk perception and communication for disaster risk management in mountain areas of developing countries: a Mexican foretaste. J. Mt. Sci.13, 2079–2093 (2016). ArticleGoogle Scholar
  156. Intrieri, E., Gigli, G., Casagli, N. & Nadim, F. Brief communication ‘Landslide early warning system: toolbox and general concepts’. Nat. Hazards Earth Syst. Sci.13, 85–90 (2013). ArticleGoogle Scholar
  157. Varnes, D. J. Landslide types and processes. Landslides Eng. Pract.24, 20–47 (1958). Google Scholar
  158. Zaruba, Q. & Mencl, V. Landslides and Their Control (Elsevier, 1969).
  159. Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol.73, 247–265 (2004). ArticleGoogle Scholar
  160. Van Asch, T. W. J., Buma, J. & Van Beek, L. P. H. A view on some hydrological triggering systems in landslides. Geomorphology30, 25–32 (1999). ArticleGoogle Scholar
  161. Zêzere, J. L., Trigo, R. M. & Trigo, I. F. Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat. Hazards Earth Syst. Sci.5, 331–344 (2005). ArticleGoogle Scholar
  162. Varnes, D. J. Slope movement types and processes. Spec. Rep.176, 11–33 (1978). Google Scholar
  163. Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update. Landslides11, 167–194 (2014). ArticleGoogle Scholar
  164. Carlà, T. et al. Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar interferometry. Landslides16, 1425–1435 (2019). ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Earth Sciences, Università degli Studi di Firenze, Florence, Italy Nicola Casagli, Emanuele Intrieri, Veronica Tofani, Giovanni Gigli & Federico Raspini
  1. Nicola Casagli